BENDING OF A STRIP

PMM Vol. 32, No. 3, 1968, pp. 454-457

V.V. KOPASENKO

(Rostoveon-Don)
(Received December 13, 1967)
The problem of beading of a half-strip rigidly fastened along the short edge is examined. An integral equation is constructed for the normal stress at the clamping and the character of singularities of its solutions at the comers is investigated. By the method of collocation the given equation is reduced to a sy stem of linear al gebraic equations.

Numerical calculations were carried out for the case

Fig. 1 of bending of the half-strip by a moment applied at infinity.

1. Let us examine the problem of bending of a halfstrip under the following boundary conditions (Fig. 1):

$$
\begin{gather*}
u=v=0, \quad x=0, \quad|y| \leqslant 1 \tag{1.1}\\
\sigma_{y / 1}=g(x) \operatorname{sgn} y, \quad \tau_{x 1 y 1}=r(x), \quad y= \pm 1 \tag{1.2}
\end{gather*}
$$

Here u, v are displacements along axes x_{1}, y_{1}, respectively, and $r_{x y_{1}}, \sigma_{y_{1}}$ are the tangential and nomal stresses. For derivation of the integral equation for the
normal atress $\sigma(t)$ at the clamping we will make use of the method developed in paper [1]. Then we obtain

$$
\begin{align*}
& \int_{-1}^{1} \sigma(t)\left\{\ln |y-t|+\frac{2 v}{(v+2)}(1-t)\left[\frac{(1+y)}{(2+y-t)^{2}}-\frac{(1-y)}{(2-y-t)^{2}}\right]-\right. \\
& \left.-\frac{v^{2}+2 v+2}{v(v+2)} \ln \frac{(2+y-t)}{(2-y-t)}\right\} d t+R(\sigma)+\frac{2}{(v+2)} K(y) \int_{-1}^{1} \sigma(t) t d t+ \\
& t-\gamma_{0} \pi!!-f(y)=0, \quad|y| \leqslant 1 \tag{1.3}\\
& f\left((1)=-\frac{4(1+v)}{(v+2)} \int_{u}^{\infty} \bar{R}(\lambda)\left[\left(\lambda \operatorname{sh} \lambda-\frac{\operatorname{ch} \lambda}{v}\right) \varphi(\lambda y)-\operatorname{ch} \lambda \lambda y \psi(\lambda y)\right] \frac{d \lambda}{\lambda \Delta_{-}}+\right. \\
& +\frac{4(1+v)}{(v+2)} \int_{0}^{\infty} \bar{r}(\lambda)\left[\left(\lambda \operatorname{ch} \lambda-\frac{1+v}{v} \operatorname{sl} \lambda\right) \varphi(\lambda y)-\lambda y \operatorname{sh} \lambda y \psi(\lambda y)\right] \frac{d \lambda}{\lambda \Delta_{-}} \\
& L_{s}=\sum_{l=0}^{\infty}(2 k+3) y_{y^{2 k+2}}^{\infty} \frac{\Gamma(2 m+2 k+7)}{\Gamma^{\prime}(2 k+4) \Gamma(2 m+4)}\left(\frac{1}{2}\right)^{2 k+2 m+5}\left\{\frac{P_{k+m}}{v}+\right.
\end{align*}
$$

$$
\begin{gathered}
\left.+\beta_{k+m}+v\left[(2 k+3)(2 m+3) P_{\lambda+m}+\varphi_{k+m}\right]\right\} \\
K(y)=\sum_{m=0}^{\infty}\left(\frac{y}{2}\right)^{2 m+3}\left(\frac{\alpha_{m}}{v}+\delta_{m}+v \varepsilon_{m}\right), \quad \Gamma(n+1)=n \Gamma(n) \\
v=\frac{1}{1-2 \mu}, \quad \varphi(\lambda y)=\operatorname{sh} \lambda y-\lambda y, \quad \psi(\lambda y)=\operatorname{ch} \lambda y-1, \quad \Delta_{-}=\operatorname{sh} 2 \lambda-2 \lambda \\
\bar{g}(\lambda)=\int_{0}^{\infty} g(x) \sin \lambda x d x, \quad \bar{r}(\lambda)=\int_{0}^{\infty} r(x) \cos \lambda x d x
\end{gathered}
$$

Here $p_{n}, \beta_{n}, \varphi_{n}, \alpha_{n}, \delta_{n}$, and ϵ_{n} are coefficients which are computed once and for all, γ_{0} is an arbitrary constant, μ is Poisson's ratio.

Eq. (1.3) is the integral equation of Fredholm of the first kind. The kernel of this equation has a moving singularity on the diagonal $y=t$ and fixed singalarities at points $y= \pm 1$. The fixed singularity in the kernel complicates the examination of the equation and its numerical solution.
2. Let us devote our attention to the investigation of the singularity of the solution of the problem under examination. We differentiate equation (1.3) with respect to the variable y, then carry out the substitution $1-t=u$ and $1-y=v$ and take into account that $\sigma(-t)=-\sigma(t)$.

As a result we obtain

$$
\begin{equation*}
\int_{0}^{1} q(u)\left[K(u, v)+K(u, 2-v)+K_{1}(u, v)\right] d u=f(v) \quad(0 \leqslant v \leqslant 2) \tag{2.1}
\end{equation*}
$$

$$
q(u)=\sigma(1-u), \quad K(u, v)=\frac{1}{(u-v)}+\frac{2 v}{(v+2)} \frac{u(u-v)}{(u+v)^{3}}-\frac{v^{2}+2 v+2}{v(v+2)} \frac{1}{(u+v)}
$$

Here $K_{1}(\nu, \nu)$ and $f(\nu)$ are continuous functions and continuously differentiable any number of times with respect to u and v in the region of their change. Apparently, the singularity of solution near the point $v=0$ will be determined only by the kernel $K(u, v)$. Let us make use of results of [2] in which it was shown that the solution of the int egral Eq.

$$
\begin{equation*}
\int_{0}^{\infty} q_{1}(u) K(u, v) d u=f_{1}(v) \quad(0 \leqslant v<\infty) \tag{2.2}
\end{equation*}
$$

near the boundary $v=0$ can be represented in the form

$$
\begin{equation*}
q_{1}(v)=\sum_{k=0}^{\infty} M_{k} v^{p_{k}-1} \tag{2.3}
\end{equation*}
$$

if $f_{1}(\nu)$ is a continuous function with all its derivatives in the vicinity $v=0$. Here p_{k} are roots of the characteris tic Eq.

$$
\begin{equation*}
2 x \cos \pi p-4 p^{2}+1+\chi^{2}=0, \quad x=3-4 \mu \tag{2.4}
\end{equation*}
$$

The real part of p_{k} is positive. Eq. (2.4) for any $0<\mu<0.5$ has one real positive root $p_{s}<1$. The remaining roots are complex and as is shown by specific compatations [3]

$$
\operatorname{Re} p_{k}>1.6, \quad k \geqslant 1
$$

Since the singularity of the solution of Eq. (2.2) near the boundary $v=0$ is determined
only by the behavior of the kernel $K(u, v)$ near this point, the solution of Eq. (2.1) in this vicinity is represented by Eq. (2.3).

On the basis of condition $\sigma(-y)=-\sigma(y)$ we can draw an analogons conclusion about the behaviot of the solution near the point $1+y=0$.
3. Having examined singularities of the solution of the integral Eq. (1.3) at the ends of section $[-1,1]$, we select as a numerical method the analog of the method of MulthoppKalandi [1]. In accordance with expansion (2.3) the approximate solution of the problem may be sought in the fom

$$
\begin{equation*}
\sigma(t)=D\left[\frac{(1+t)^{2-p_{v}}}{(1-t)^{1-p,}}-\frac{(1-t)^{2-p_{1}}}{(1+t)^{1-p}}\right]+\sqrt{1-t^{2}} \sum_{n=0}^{(n=N)} E_{n} U_{2 n+1}(t) \tag{3.1}
\end{equation*}
$$

where $U_{i n+1}(t)$ are Chebyshev functions of the second kind,
We differentiate the left part of Eq. (1.3) with respect to variable y, after that we substitute (3.1) Into the obtained equation, then from the condition of equalliy to zero of the last relationship in the selected nodes of collocation y_{k} we arrive at a system of linear algebraic equations with respect to unknowns D and E_{n}.

Table 1

n	$-\mathrm{P}_{n}$	$-\beta_{n}$	φ_{n}
0	0.2614406 (-1)	0.1008765	0.1272675
1	0.4906414 (-2)	0.2294624 (-1)	0.4891501 (-1)
2	0.1087015 (-2)	0.605872 (-2)	0.1797972 (-1)
3	0.2570645 (-3)	0.167498 (-2)	$0.6316076(-2)$
4	0.625843 (-4)	0.468406 (-3)	0.2131532 (-2)
5	0.154462 (-4)	0.130806 (-3)	$0.6952711(-3)$
6	0.383739 (-5)	0.363067 (-4)	0.220422 (-3)
7	0.95640 (-6)	0.10002 (-4)	0.68244 (-4)
8	0.23873 (-6)	0.27358 (-5)	0.20707 (-4)
9	0.5962 (-7)	0.7431 (-6)	0.6173 (-5)
10	0.149 (-7)	0.201 (-6)	0.1816 (-5)
11	0.3725 (-8)	0.538 (-7)	0.5285 (-6)
12	0.9312 (-9)	0.1440 (-7)	0.1520 (-6)
13	0.2328 (-9)	0.3834 (-8)	0.4334 (-7)
14	0.5820 (-10)	0.1017 (-8)	0.1225 (-7)
15	$0.1455 \quad(-10)$	0.2688 (-9)	0.3440 (-8)

Adopted abbreviation of notation, $0.2614406(-1)$ indicates $\mathbf{- 0 . 0 2 6 1 4 4 0 6}$
Table 2

n	$-\alpha_{n}$	-8_{n}	ε_{n}
0	1.0387106	3.3196631	-1.8125050
1	0.1568644	0.6052593	-0.2071643 (-1)
2	0.3925131 (-1)	0.1835699	0.1165609
3	0.1087015 (-1)	0.605872 (-1)	0.8196588 (-1)
4	0.3084774 (-2)	0.2009976 (-1)	0.4186040 (-1)
5	0.876180 (-3)	0.6557687 (-2)	0.1845111 (-1)
6	0.247139 (-3)	0.2092894 (-2)	0.7417253 (-2)
7	0.69073 (-4)	0.653520 (-3)	0.279335 (-2)
8	0.19128 (-4)	0.20005 (-3)	0.10015 (-2)
9	0.5252 (-5)	0.60189 (-4)	$0.34527 \quad(-3)$
10	0.1431 (-5)	0.1783 (-4)	0.1152 (-3)
11	0.388 (-6)	0.523 (-5)	0.375 (-4)
12	0.1043 (-6)	0.1508 (-5)	0.1198 (-4)
13	0.2794 (-7)	0.4321 (-6)	0.3751 (-5)
14	0.74503 (-8)	0.12270 (-6)	0.11559 (-5)
15	0.1979 (-8)	0.34575 (-7)	0.35131 (-6)
16	0.5238 (-9)	0.96769 (-8)	0.10550 (-6)

Apparently the found solution $\sigma(t)$ will be a solution of the initial Eq. (1.3). As nodes of collocation, roots of Chebyshev polynomials of the first kind were selected.

$$
y_{k}=\cos \frac{(2 k-1)}{4 N} \pi \quad(k=1, \ldots, N)
$$

Here N is the number of points of division of section $[0,1]$.
In this manner the problem was solved for the case of beading of the half-strip by the moment M, applied at infinity in the absonce of normal and shoar atresses on the auraces of the half-strip $(\bar{g}(\lambda)=0, \bar{r}(\lambda)=0)$ with the additional condition

$$
\begin{equation*}
\int_{-1}^{1} \sigma(t) \cdot t d t=\frac{M}{h^{2}} \tag{3.2}
\end{equation*}
$$

From (3.2) the arbitrary constant γ_{0} is detemined. Because of the specially selected form of the approximation of solution (3.1) all integrals of the problem are taken in closed form. As a result of calculations a system of linear algebraic equations of the following form was obtained:

Table 3

v	$N=\delta$	$N=6$
0.12050	0.16638	0.16424
0.21901	0.30122	0.299969
0.40849	0.55829	0.56068
0.58168	0.79729	0.79617
0.69671	0.96066	0.95797
0.90045	1.30331	1.30593
0.95534	1.54167	1.53738

	$N=s$	$N=\sigma$
	N	
D	0.21977	0.22060
E_{0}	0.36917	0.36577
E_{1}	$0.12855(-1)$	$0.10304(-1)$
E_{2}	$-0.77423(-2)$	$-0.10260(-1)$
E_{3}	$-0.49815(-2)$	$-0.79340(-2)$
E_{d}	0.31556	$-0.38509(-2)$
γ_{0}	$0.31230(2)$	

$$
\begin{gather*}
D a_{m}+\sum_{n=0}^{n=N-2} b_{n m} E_{n}+\gamma_{0}=0 \quad(m=1, \ldots, N) \tag{3.3}\\
D \frac{1}{\varepsilon}+E_{0} 0.25=\frac{1}{\pi} \frac{M}{h^{2}} \quad\left(\varepsilon=\frac{3 \sin \pi p_{0}}{4\left(1-p_{0}\right)\left(2-p_{0}\right)\left(3-2 p_{0}\right)}\right) \tag{3.4}
\end{gather*}
$$

Eq. (3.4) follows from condition (3.2). In Table 1 values are given for P_{n}, β_{n} and ϕ_{n}. Values of coefficients α_{n}, δ_{n} and ϵ_{n} are presented in Table 2.

In the computation of coefficients presented above their representations through Howlands integrals [4] were utilized.

In Table 3 results of calculations are premented for atresses at the $\sigma^{\circ}=\sigma(y)\left(h^{2} / M\right)$ depending on the number of pointa of collocation ($N=5,6$) for $\mu=0.31741$ and $p_{0}=\mathbf{0 . 7 0 0 0 0}$. It is evident from this Table that the fifth approximation differs from the sixth by no more than 1.5\%.

Table 4 contains values of coefficients D and E_{n} for the fifth and sixth approximations.
From an examination of Tables it follows that the presented mothod has a high degree of convergence, in this connection the highest degree of accuracy of solation is achieved near the comer points.

Values of streases found from the equation for atrength of materiale $\sigma(t)=M / h^{2} 1.5 t$, differ from practically exact values obteined in chis paper by no more than 10% for $|\&| \leq 0.95$.

The anthor thanks I.1. Vorovich for formulation of the problem and gaidance in its solution.

BIBLIOGRAPHY

1. Vorovich, I.I., and Kopasenko, V.V., Some problems in the theory of elasticity for a semi-infinite strip. $P M M$ Vol. 30, No. 1, 1966.
2. Kurahin, L.M., Mixed plane boundary value problem of the theory of elasticity for a quadrant. PMM Vol. 23, No. 5, 1959.
3. Ufliand, la.S., Integral Transformations in Problems of the Theory of Elasticity. (p. 141). M.-L. Izd. Akad. Nauk, SSSR, 1963.
4. Nelson, C.W., New Tables of Howlands and Related Integrals. Math. Comp. Vol. 15, (pp. 12 to 18), 1961.

Translated by B. D.

