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The problem of bending of a half-strip rigidly fastened along the short edge is examined.
An integral equation is constructed for the normal stress at the clamping and the character
of singulerities of its solutions at the comers is investigated. By the method of collocation
the given equation is reduced to a sy stem of linear algebraic equations.

Numerical calculations were carriedout for the case

! of bending of the half-strip by a moment applied at infinity,
P 8 p by
1 T 1. Let us examine the problem of bending of a half-
z,=1h 25 strip under the following boundary conditions (Fig. 1):
t w== v =0, z =0, lyl<t (1.1)
1
p o = g (%) sgny, T = r {0, y=+41 (12

Here u, v are displacements along axes z,, y,, res-
Fig. 1 pectively, and 1., ., 0. y1 8re the tangential and nomal
stresses. For denzstion of the integral equation for the
normal stress o (¢} at the clamping we will make use of the method developed in paper[1].
Then we olbtain

2 (4w (1—y)
Joofmn—i+ 55 00| gi 2w ~ wor o -
) 2 ) 2 }
vif-2v42 { +?; i
B ICE T )}d‘TR("’H{_"’H2>‘K(y)iw)tdt+
yoy — f{y) =0, Iyl (1.3)
OO— ch A dh
f (.’l)r::—é(_(::{‘i\;‘)' g(k){(hshk»—- )(p(k:;)w(;h}“}by\p(;&)jl A +

IR N 14
T.—(V_‘i‘z)— r(l)[(xchl—— v
i}

dA
sh 7») @ (Ay) — Ay shry § (ky)] A

oa 3
2 +
R(s)= mg}ol’sg 6{!)!23 3dt
= -1

o2

Xy I l‘(2m+2k+7) _‘L. 2k+2mis Pk+
= 2 @49 R T L T Em ) (=) [Flom 4

456



Bending of a strip 457
+Brom + V128 + 3)2m+3) Py + Do)

K ()= % (%)mﬂ (3;& +6m+vem), T(n+1) = al(n)

m==Q
v =T—7~Lﬁﬁ y @(A\y)=shiy —Ay, $(Ay)==chAy—1, A_=sh2k —2A
ferd oG
g(A) = Sg (z)sinAzdz, r(A)= S r {x)coshrdx
o ¢

Here Pp, Boy @, n. 8,y and € are coefficients which are computed once and for
all, Yo is an arbitrary constant, u is Poisson’s ratio.

Eq. (1.3) is the integral equation of Fredholm of the first kind. The kernel of thia
equation has a moving singularity on the diagonal y = ¢ and fixed singularities at points
y= %1, The fixed singularity in the kemel complicates the examination of the equation
and its numerical solution.

2. Let us devote our attention to the investigation of the singularity of the solution
of the problem under examination. We differentiate equation (1.3) with respect to the
variable y, then carry out the substitation 1 — ¢t =u and 1 — y = v and take into account
thatg ( ~¢) =~ o (2).

As a result we obtain

1
Sq(u) [Ku, v)+K(u, 2—o)+ Ki(u, v)]ldu=f(») (0<<v<2) 2.1)
0
1 v u(u—v) v 2v 42 i
qu)y=c(1—u), K(u 1’)=(u—v)+(v+2) @+ = T vv+2) mEw

Here K, (u, v) and f(v) are continuous functions and continucusly differentiable any
number of times with respect to u and v in the region of their change. Apparently, the
singularity of solution near the point v = 0 will be determined only by the kemel K (4, v).
Let us make use of resalts of [25 in which it was shown that the solution of the integral
Egq.

5(]1 (u) K (u, v)du = j; (v) O<<r <o) (2.2)
0

near the boundary v = O can be represented in the form

o

a ()= D MphT (2.3)

=0

if f, (v) is & continuous function with all its derivatives in the vicinity v = 0, Here P are
roots of the characters tic Eq.

2% cos ip — 4p% -1 42 = 0, ® = J—4pu (2.4)

The real part of p;. is positive. Eq. (2.4) for any 0 <y < 0.5 has one real positive root
ps < 1. The remaining roots are complex and as is shown by specific computations [3]

Re‘gh>i.6, k=1
Since the singularity of the solution of Eq. (2.2) near the boundary v = 0 is determined



458 V.V. Kopasenko

only by the behavior of the kernel K {u, v) near this point, the solution of Eq. (2.1) in this
vicinity is represented by Eg. (2.3).

On the basis of condition o ( = y) = ~ 0 {y) we can drew an analogous conclusion
about the hehavior of the solution near the point 1 +y =0,

3. Having examined singularities of the solution of the integral Eq. {1.3) at the ends
of section [~ 1, 1], we select as a numerical method the anslog of the method of Multhopp-
Kalandi (1], In accordance with expansion (2.3) the approximate solution of the problem
may be sought in the fom

{ o g | — 2P (n=N)
=0 [((1——-1;1‘1:' _((1 ; :;1-11 ]Jrl/l—lz 2 En Uy () 3-1)
B n==0

where U, ., (t) are Chebyshev functions of the second kind,

We differentiate the left part of Eq. {1.3) with respect to variable y, after that we
substitute (3.1) into the obtained squation, then from the condition of equality to zero of the
last relationship in the selected nodes of collocation y; we arrive at & system of linear
algebraic equations with respect to unknowns D and £,

Table 1

n _pn l ‘—Bn l Pn

0 0.2614406 (—1) 0.1008765 0.1272675

1 0.4906414 (—2) 0.2294624 (—1) 0.4891501 (—1)

2 0.1087015 (—2) | 0.605872 (—2) | 0.1797972 (—1)

3 0.2570645 (—3) | 0.167498 (—2% 0.6316076 (—2)

4 0.625843 (—4) 0.468406 (—3 0.2131532 (—2)

5 0.154462 (—4) 0.130806 (—3) 0.6952711 (—3)

6 0.383738 (— 5% 0.363067 (—4&) 0.220422 (—3)

7 0.95640 (—6 0.10002 (—4) 0.68244 {(—4%)

8 0.23873 (—6) 0.27358 (—D5) 0.20707 (—4)

9 0.5962 (=7) 0.7431 (—6) 0.6173 (—5)
10 0.149 (-7 0.2 (—6) 0.1816 (—5)
11 0.3725 (—8) 0.538 {(—T1) 0.5285 (—6)
12 0.9312  (—9) 0.1440 (—7) 0.1520  (—B6)
13 0.2328 (—9) 0.3834 (—8) 0.4334 (—7)
14 0.5820 (—10) 0.1017 (—8) 0.1225 (—T)
15 0.1455 (—10) | 0.2688 (—9) | 0.3440  (—8)

Adopted abbreviation of notation, 0.2614406 (— 1) indicates — 0.02614406
Table 2

n — l ._Sn L

0 1.0387106 3.3196631 —4.8125050

1 0.1568644 0.6052593 —0.2071643 (—1)
2 0.3925131 (—1) 0.1835699 0.,1165609

3 0.1087015 (—1) 0.605872 (—1) 0.8196588 (—1)
4 0.3084774 (—2) | 0.2009976 (—1) 0.4186040 (—1)
5 0.876180 (—3) 0.6557687 (—2) 0.1845111 (—1)
6 0.24M39% (—3) 0.2092894 (—2) 0.7417253 (—2)
7 0.68073 (—4) 0.653520 (—3) 0.279335 (—2)
8 0.19128 (—4) | 0.20005 (—3) 0.10015 (—2)
9 0.5252 (—5) 0.60188 (—4) 0.34527 (—3)
10 0.1431  (—=5) | 0.1783  (—4) 0.1152  (—3)
11 0.388 (—6) | 0.523 (—5) 0.375 (—4)
12 0.1043 (—6) 0.1508 (—5) 0.1198 (—4&)
13 0.219% (—7) | 0.4321 (—6) 0.3751  (—5)
14 0.74503 (—8) 0.12270  (—86) 0,11558 (—b)
15 0.1979 (—8) | 0.34575 (—7) 0.35431  (—6)
16 0.5238  (—9) | 0.96769 (—8) 0.40550  (—6)
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Apparently the found solution o (£} will be & solution of the initial Eq. (1.3). As nodes

of collocation, roots of Chebyshev polynomials of the first kind were selected.
2k —1
'yk=cos(——47v-—)n k=1, ..., N)

Here N is the nomber of points of division of section [0, 1].

In this manner the problem was solved for the case of bending of the half-strip by the
moment M, applied at infinity in the absence of normal and shear stresses on the surfaces
of the half-strip (7 (A} = 0, 7 (A) = 0) with the additional condition

1
M
S G (t)tdt = W (3.2)

-1

From (3.2) the arbitrary constant y, is determined. Because of the specially selected
form of the approximation of solution (3.1) all integrals of the problem are taken in closed
form. As a result of calculations a system of linear algebraic equations of the following
form was obtained:

Table 3 Table 4
v N=$ N=¢ N=3$§ N=§
0.12050 0.16638 0.16424 D 0.21877 0.22060
0.24901 0.30122 0.29969 E, 0.36917 0.36577
0.40849 0.55829 0.56068 E; 0.12855 (— 1) 0.10304 (—1)
0.58168 0.79729 0.79617 E, —0.77423 (—2) | —0.10260 (—1)
0.69671 0.96066 0.95797 Eg —0.49815 (—2) —0.79340 (—2)
0.90045 1.30331 1.30593 E, —0.38509 (—2)
0.95534 1.54167 1.53738 To 0.31556 0.31230
n=N—2
Dim+ | bumEnt+To=0 (m=1, ..., N) (3.3)

1 1

n=0¢

M

3 sinnpg

&= 4(1—‘1’0)(2—}’0)(3—21’0))

(3.4)

Eq. (3.4) follows from condition (3.2). In Table 1 values are given for P, 8, and ¢,.

Values of coefficients a_, §, and €,
In the computation o’% coefficient

Howlands integrals [4] were utilized.
In Table 3 results of calculations sre presented for stresses at the 6° = o (y) (2*/M)
depending on the number of points of collocation (N = 5, 6) for i = 0.31741 and
pe = 0.70000. It is evident from this Table that the fifth approximation differs from the
sixth by no more than 1.5%.
Table 4 contains values of coefficients D and E, for the fifth and sixth approximations,
From an examination of Tables it follows that the presented method has a high degree
of convergence, in this connection the highest degree of accuracy of solution is achieved
near the comer points.
Values of stresses found from the equation for strength of materials 0 (1) = M _/h%1.5;,
differ from practically exact values obtained in this paper by no more than 10% for |1| < 0.95
The author thanks L.I. Vorovich for formulation of the problem and guidance in its

solution.

are presented in Table 2.
s presented above their representations throngh
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